

OF QUEENSLAND


```
United Nations
Educational, Scientific and
Cultural Organization
```

Union of Crystallograph

2014 international year of crystallography

"Crystallography" Speaker: Colin Kennard 18^h July 2014 For educations purposes

Contier Mail

N 1914, **Max von Laue** won the Nobel Prize in Physics for discovering that crystals could diffract X-rays, a finding that helped revolutionise our ability to visualize matter at the atomic scale. In honour of this centennial, the United Nations Educational, Scientific & Cultural Organization (UNESCO) has declared 2014 the International Year of Crystallography.

 The major objectives of the IYCr2014 are:
 to increase public awareness of the science of crystallography and how it underpins most technological developments in our modern society

 to inspire young people through public exhibitions, conferences and hands-on demonstrations in schools

to foster international collaboration
 between scientists worldwide

 to promote education and research in crystallography and its links to other sciences

The International Union of Crystallography counts 48 Nobel Prizes

that can in some way be attributed to the

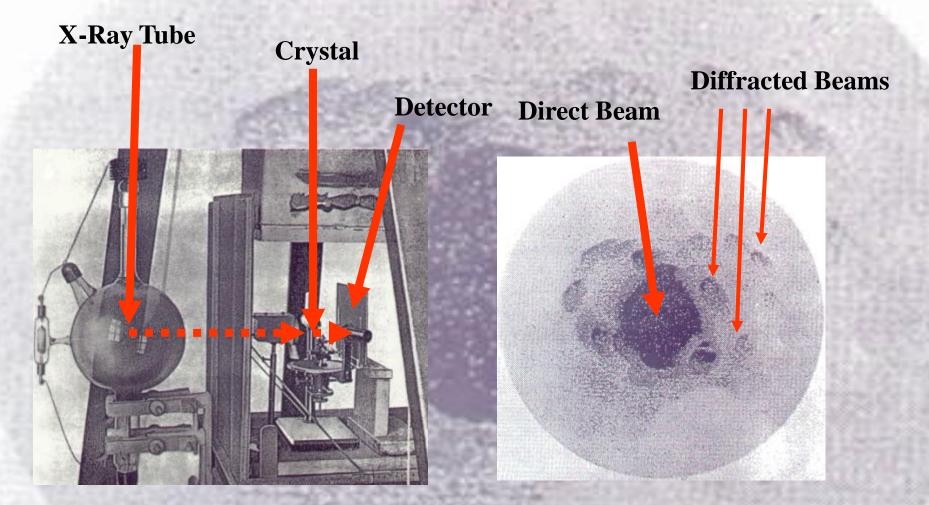
\$1 face value \$12.27 cost

2014 marks the International Year of Crystallography, commemorating the centennial of X-ray crystallography and the Nobel Prizes to Max von Laue (1914) and father and son duo, Sir William Henry Bragg and Australian Sir William Lawrence Bragg (1915). This coin is a tribute to all who dare to dream and enquire, and all who are in the pursuit of living in a world where anything is possible.

son duo, Sir William Henry Bragg and Australian Sir William Lawrence Bragg (1915)

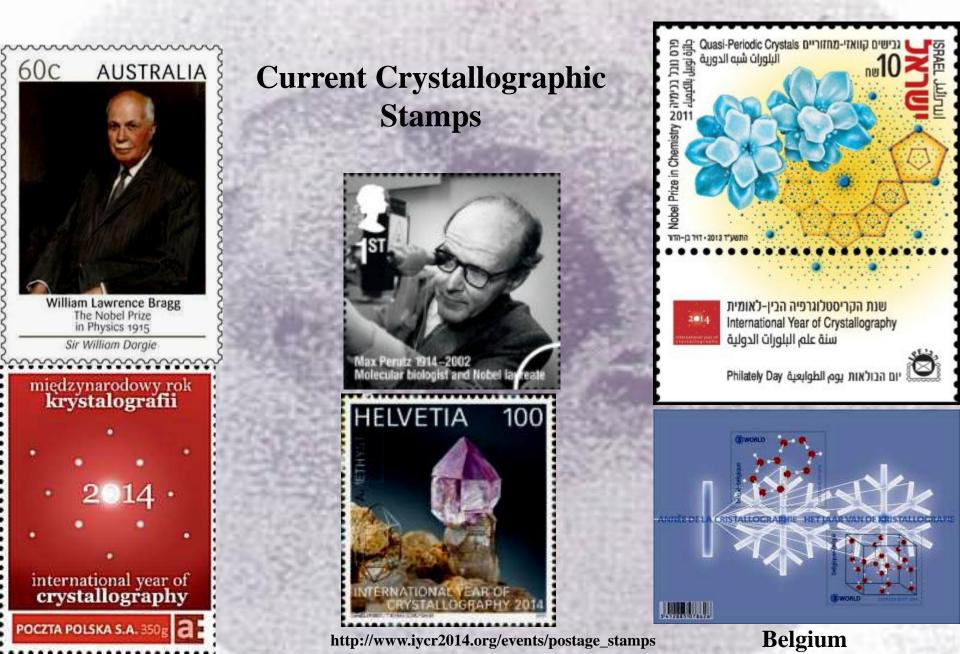
SECURE YOUR 2014 \$1 COLLECTABLE CLEVER AUSTRALIA MEDI-MAZING COIN, GUARANTEED TO REMAIN A TIMELESS CREATION, BY COMPLETING THE FORM ON THE REVERSE.

Inspiration Investigation Celebration


http://en.wikipedia.org/wiki/Interference_pattern_(disambiguation)#mediaviewer/File:Swimming_Pool_Interferometry.jpg

Inspiration

Log onto this http://ezeducationorama.com/ezMedia/physics/waves/interference/tw oSource/twoSource1/twoSource1.php?color=black&backgroundCol or=aqua


http://zonalandeducation.com/mstm/physics/waves/interference/twoSource/TwoSourceInterference1.html

Inspiration Investigation Celebration

Famous von Laue, Friedrich & Knipping 1912's X-ray Diffraction Apparatus and photograph P.P. Ewald, "Fifty Years of X-ray Diffraction", IUCr, 1962

Inspiration Investigation Celebration

The State of Crystallography in 1906

AN INTRODUCTION TO

CHEMICAL CRYSTALLOGRAPHY

P. GROTH

AUTHORISED TRANSLATION

HUGH MARSHALL, D.Sc., F.R.S. LECTURER ON CHEMISTRY AND ON MINERALOGY AND CRYSTALLOGRAPHY IN THE UNIVERSITY OF EDINDEROH

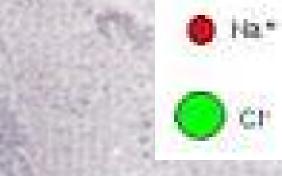
GOVT. CHEMICAL LABORATORY, BRISBANE,

GURNEY & JACKSON

PREFACE

In this short treatise on general chemical crystallography the attempt has been made to present the hitherto recognised relations between the properties of crystallised subtances and their chemical constitution on the basis of a definite view regarding the structure of crystals. In doing so, a knowledge of the

crystallographical laws is assumed, to an extent corresponding to the elementary treatment of them as contained in my text book.


Crystals

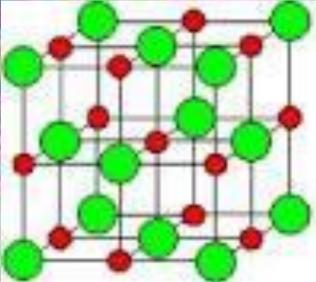

- This is the crystal cave of giants found in the Naica Mine, Chihuahua, Mexico
- Large selenite crystals (1.2 m in diameter and 15 m long)

Table Salt (NaCl)Dissolve ordinary table salt from water,
and evaporate the water in the sun

Actual Structure determined by W.H. and W.L. Bragg on 30th July 1913

http://www.google.com.au/search?client=safari&rls=en&q=structure+of+sodium+chloride&ie=UTF-8&oe=UTF-8&gfe_rd=cr&ei=ngmyU5K3DcGN8OeHnYDYAg

P.P.Ewald, "Fifty Years of X-ray Diffraction", IUCR, 1962

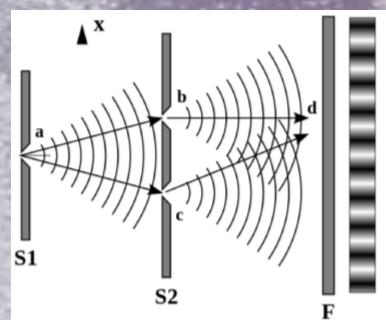
Inspiration Max Theodor Felix von Laue (9 October 1879 - 24 April 1960) German physicist who won the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals

http://en.wikipedia.org/wiki/Max_von_Laue

Max von Laue

 Laue completed his Degree in 1906 under Arnold Sommerfeld at LMU, Munich

- In 1906-09, became an assistant to Planck and met Albert Einstein for the first time and were friends
- From 1909 to 1912, Laue was a *Privatdozent* at the Institute for Theoretical Physics, under Arnold Sommerfeld, at LMU
- Sommerfeld graduate student P.P. Ewald met Laue in Englische Garten, Munich to discuss his thesis

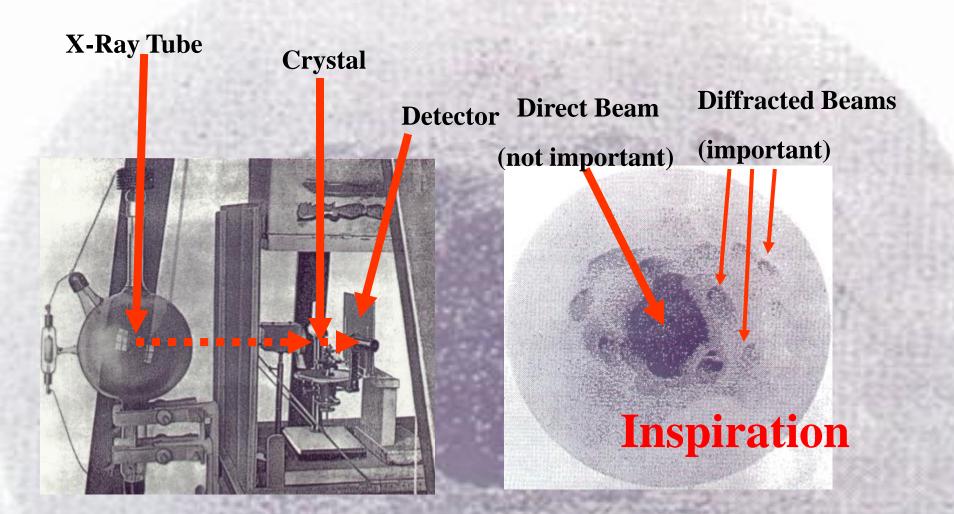

Englische Garten

http://en.wikipedia.org/wiki/Max_von_Laue

• Laue had no knowledge of Ewald's work which was to find optical properties of an anisotropic dipoles; "Could one explain the double refraction of crystals by the regular arrangements of the isotropic resonators"

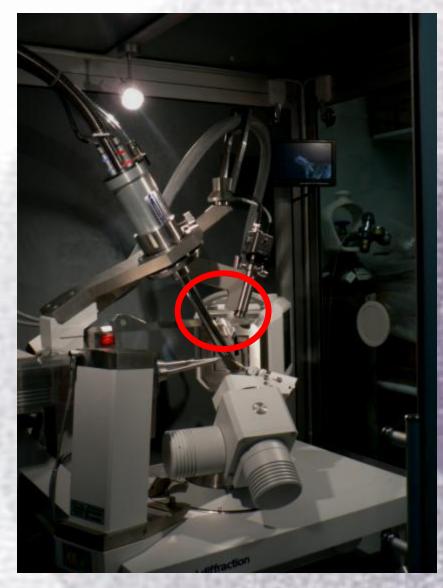
• Ewald thought that crystals had internal regularity which seemed new to Laue and said that the repeating distance was very small compared to wavelength of visible light (DVD)

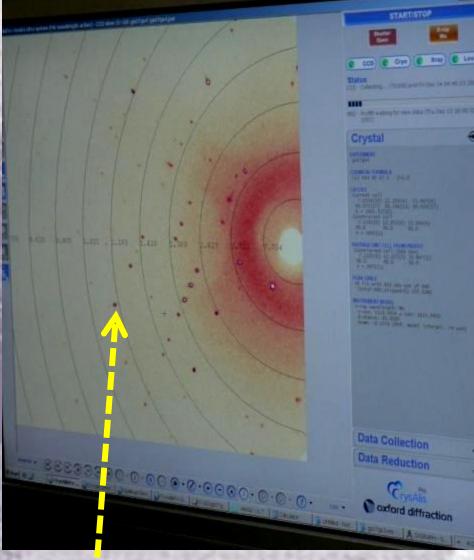
Inspiration



Interference Experiment

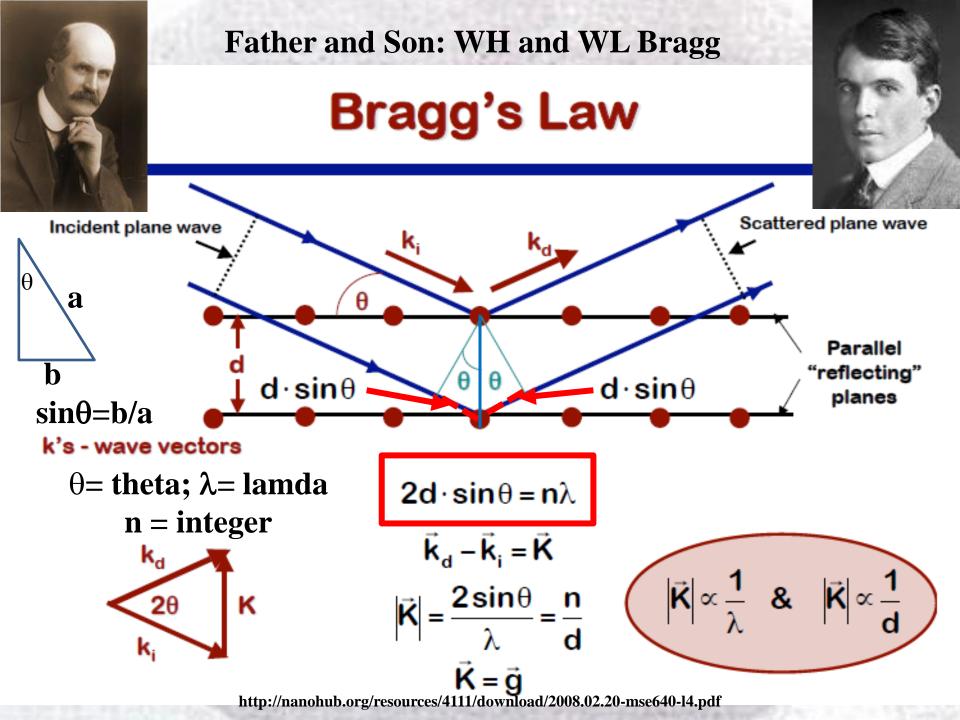
P.P. Ewald, "Fifty Years of X-ray Diffraction", IUCr, 1962 http://en.wikipedia.org/wiki/File:Ebohr1_IP.svg

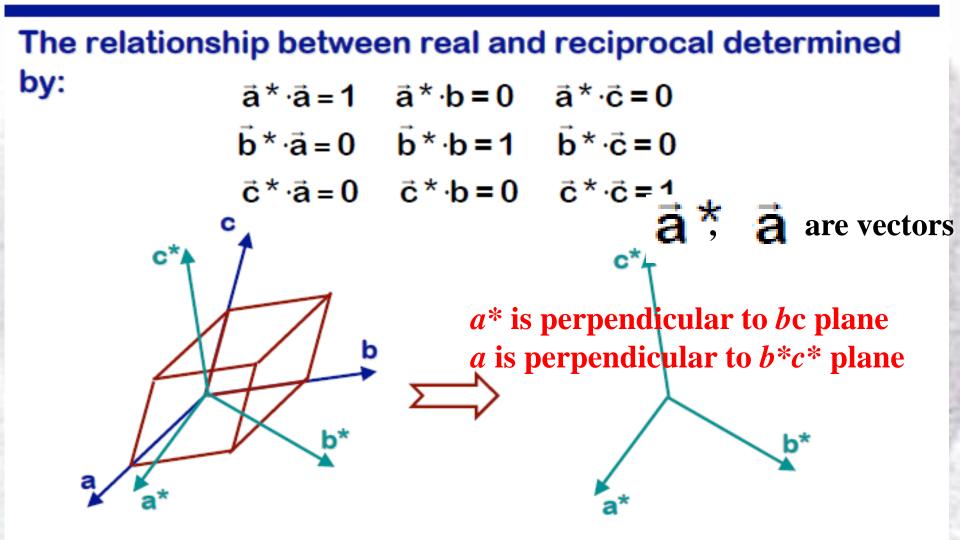

- He reported that Laue was listening in a slightly distracted way and Laue failed to discuss his thesis
- He submitted his thesis on 16 February 1912
- In June 1912, he heard of a report on Laue-Friedrich-Knipping's successful experiments given to Physical Society of Gottingen


P.P. Ewald, "Fifty Years of X-ray Diffraction", IUCr, 1962

Famous von Laue, Friedrich & Knipping 1912's X-ray Diffraction Apparatus and photograph

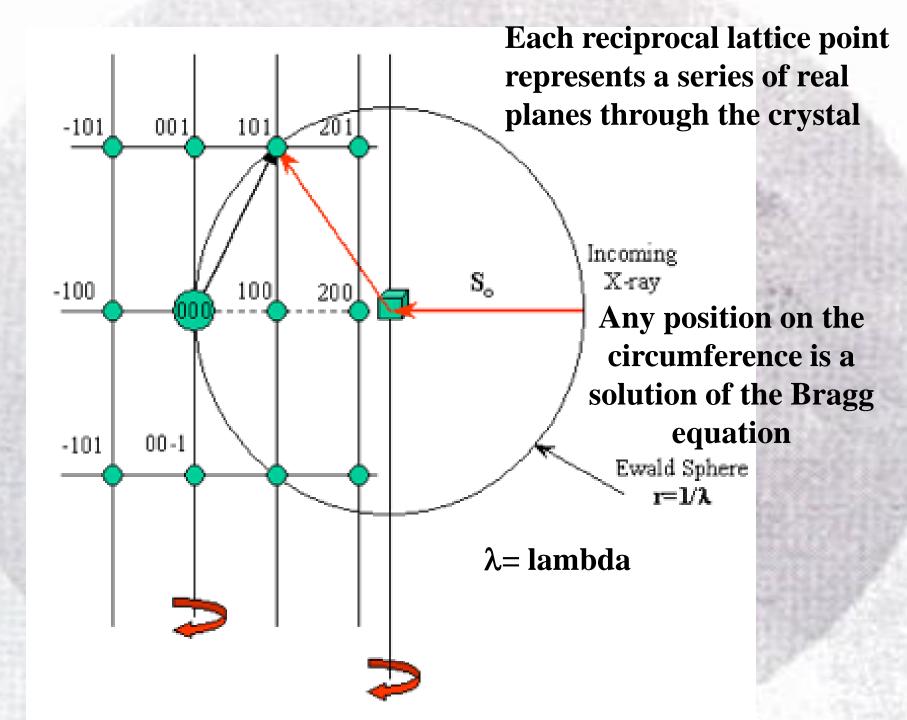
P.P. Ewald, "Fifty Years of X-ray Diffraction", IUCr, 1962




Automatic X-ray Diffractometer

Diffraction Pattern (QUT)

Each spot samples the crystal for a particular *hkl*



Real => Reciprocal

a* only parallel to a if a, b and c are mutually orthogonal

http://nanohub.org/resources/4111/download/2008.02.20-mse640-l4.pdf

A reciprocal lattice point [101] represents a series of planes through the unit cell

101

Plate 9 (p3m1) from p.22, C.H. MacGillavry, "Symmetry Aspects of M.C. Escher's Periodic Drawings", IUCR, Utrecht, 1965.

Calculation

 2π

[n]

 $f(x)e^{-inx}dx$

This is

a

Crystal

Unit

Cell

down b

axis)

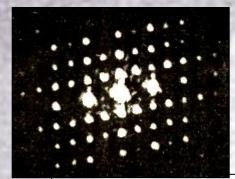
Simulation

Focussed Laser Periodic Pattern in Crystal Structure Determination

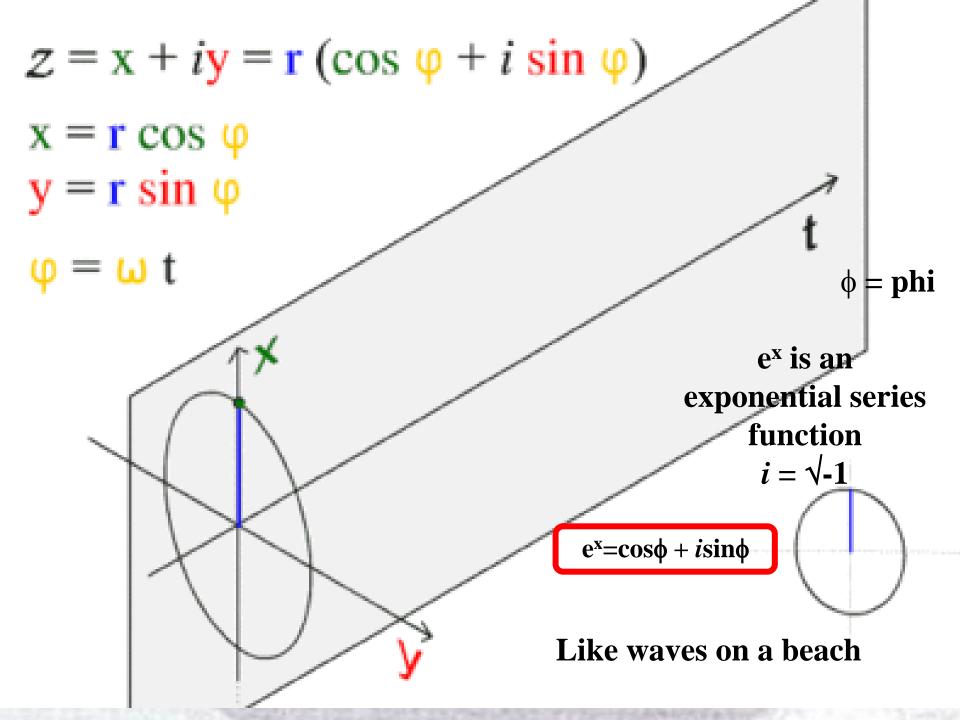

Image of Pattern Crystal Structure

Unfocussed Laser Periodic Pattern in Crystal

A mathematical solution gives the original structure



Interference Pattern


Detector

Mathematician: Joseph Fourier 1768-1830

- 1798, with Napoléon Bonaparte on his Egyptian expedition and made Governor of Lower Egypt
- 1822, Published his Théorie analytique de la chaleur, that flow of heat between two adjacent molecules is proportional to the extremely small difference of their temperatures with claims that any function of a variable, whether continuous or discontinuous, can be expanded in a series of sines of multiples of the variable
- Sines and cosines are continuous series functions and are also found in Trigonometry

http://en.wikipedia.org/wiki/Joseph Fourier

Fourier series

Suppose that F(n) is a regular function repeating every 360°, and can be represented by a combination of sine and cosine functions
Fourier series refers to the infinite series given by:

$$F(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

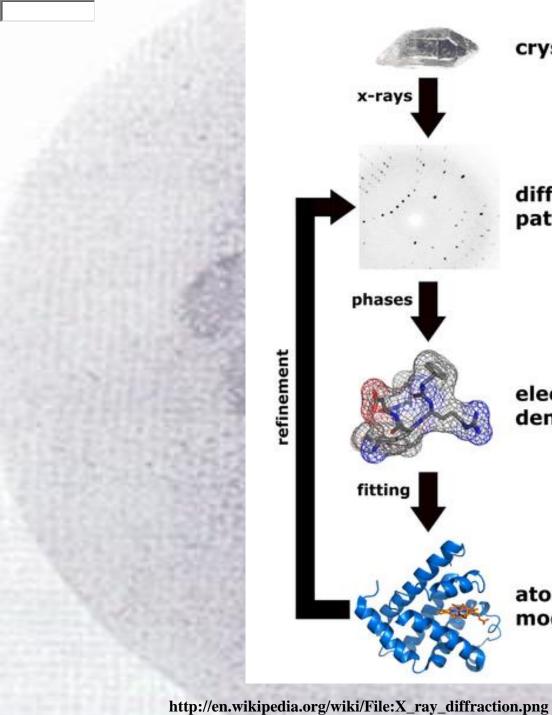
for all integers n

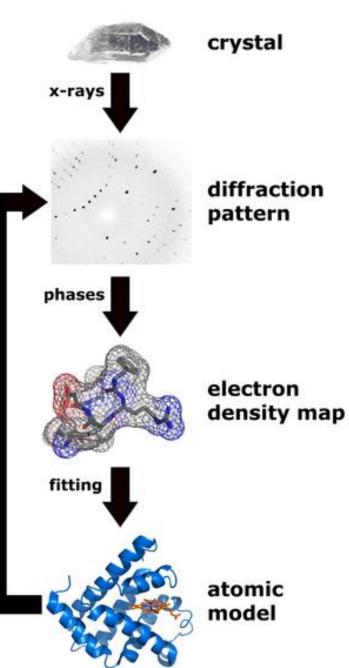
n refers to Miller Index of plane hkl

Fourier series of F(n) or F(hkl) is given by: Need to know phase of F(n) or where that wave was

 $\rho(xyz) = \frac{1}{V} \sum_{k} \sum_{k} \sum_{l} |F(hkl)| \cos 2\pi (hx + ky + lz - \phi(hkl))$ Phases
Phases

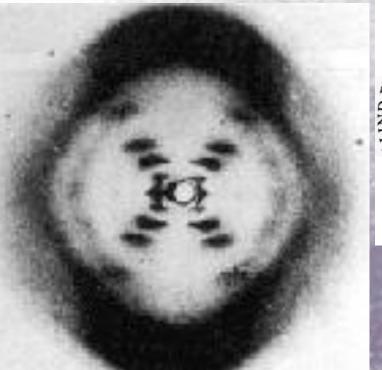
 $\rho = rho; \int_{0}^{2\pi} = integral; \pi = pi; \Sigma = sigma$

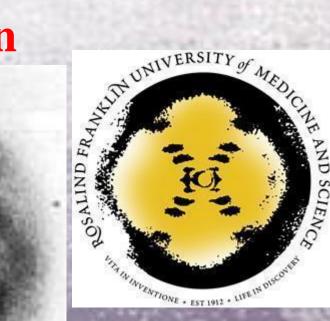

Electron Density or where the atoms are



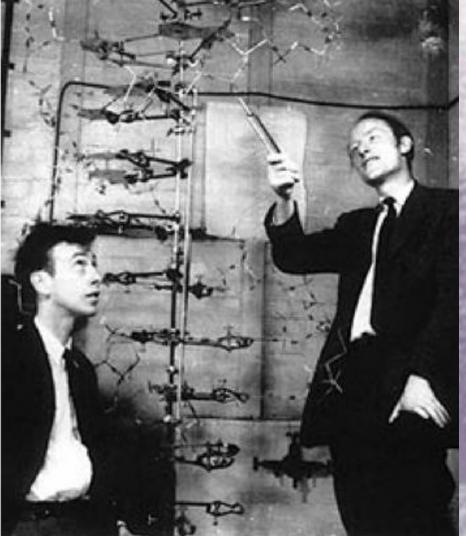
New Scientist 11 February 2012 cover says that *Seven Equations that Changed the World* The Fourier Synthesis is one of these equations

$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$


$\xi = Xi$



Celebration



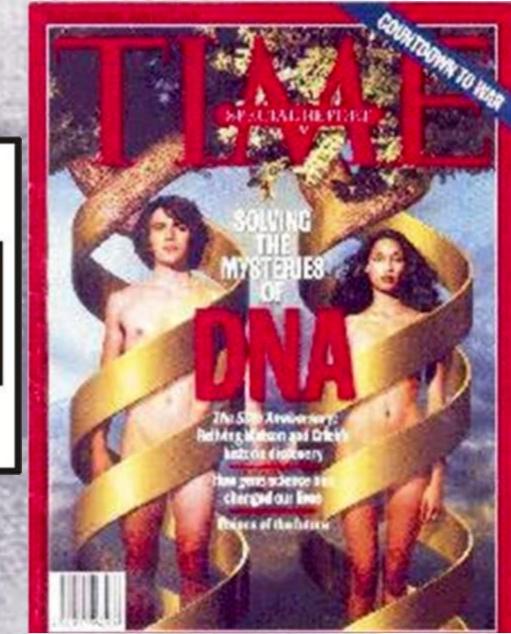
(1920-1958)

Rosalind Franklin's Famous X-ray photograph

• As Brenda Maddox who wrote *Rosalind Franklin: The Dark Lady of DNA* told Howard Berkes for *All Things Considered* of National Public Radio, USA, 6th October 2002, "*it was Franklin's photograph of the DNA molecule that sparked a scientific revolution*"

James Watson and Francis Crick with their DNA model at the Cavendish Laboratories in 1953. Photograph copyright A. Barrington Brown. To request permission to use this photo, please visit the Science Photo Library Web site at www.photoresearchers.com.

Watson and Crick Nobel Prize 1962


Current State of Model at Science Museum, South Kensington July 2011

http://www.chemheritage.org/discover/chemistry-in-history/themes/biomolecules/dna/watson-crick-wilkins-franklin.aspx

The 50th anniversary of the discovery of the structure of DNA (2003)

Compounds are nucleobases found in DNA

Celebration Insulin

crystal

Work of Dorothy Hodgkin

http://crystallographypatras.files.wordpress.com/2013/07/the-use-of-x-ray-based-methods-for-the-structural-understanding-of-insulin.pdf

23.9

10.5 Å

Nobel Prize 1964

2.0 Å

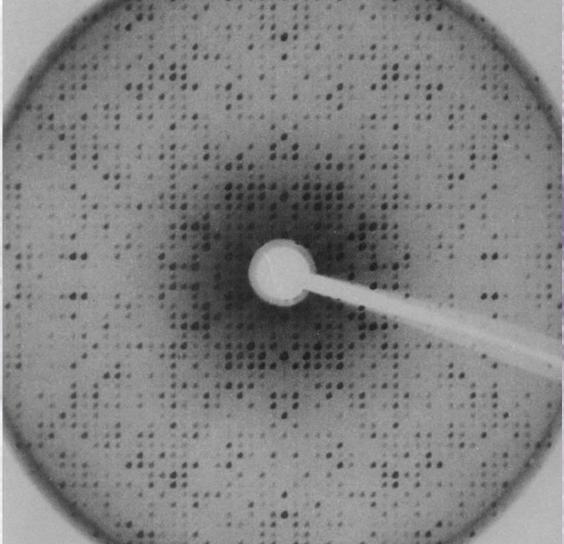
Celebration

Prof. Peter Colman, CSIRO, Australia, with a 3D model of the influenza surface protein neuraminidase

RELENZA is packaged in medicine disks called ROTADISKS® and is inhaled by mouth using a delivery device called a DISKHALER®.

Works by binding to
the active site of the
neuraminidase protein,
rendering the influenza virus
unable to escape its host cell
and infect others

http://en.wikipedia.org/wiki/Zanamivir


Australian Synchrotron, Monash University CHARGE OF THE LIGHT BRIGADE

- 1. Negatively charged particles called electrons are created here.
- They pass through a ring of magnets.
- **3.** As they travel, they accelerate to light speed.
- 4. They orbit and create synchrotron (high-beam) light.
- 5. Light is beamed into work stations (6) for research
- 6. Research Experiment

Australian 1st August 2007 p.21

Typical Protein X-ray Diffraction Photograph

http://www.embl-hamburg.de/Auto-Rickshaw/

Santosh Panjikar (AS, Monash) and **Nausad Shaikh** (IMB, UQ)) put the **AutoRickshaw** decision-making system to the test on November 2011, solving a protein structure in just 18

minutes

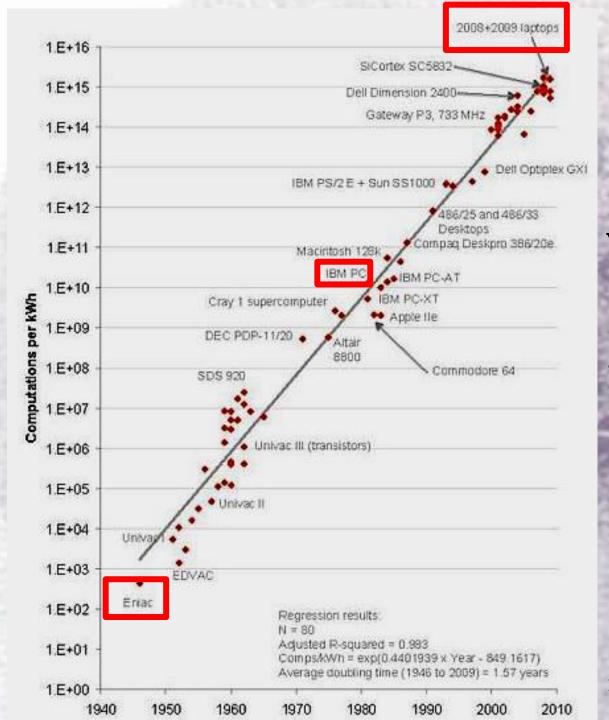
My Experience


- I was a practising Chemical Crystallographer, determining the structure of molecules (597) from 1958-1999
- When I started in 1958, my Supervisor suggested I used the old methods, such as a Madas Calculator and Beer-Lipson Strips to calculate structures using the following formula

 $\rho(xyz) = \frac{1}{V} \sum_{k} \sum_{l} \sum_{k} \sum_{l} |F(hkl)| \cos 2\pi (hx + ky + lz - \phi(hkl))$ Phases

- I solved a 4 atom problem in a year (1958)
 The following year, 1959, I graduated to UTECOM computer
- I collected data on X-ray film; material not available today
 http://www.xnumber.com/xnumber/madas.htm

www.xtal.iqfr.csic.es/Cristalografia/parte_09-en.html http://www.flickr.com/photos/drsamc/5459247665/lightbox/


"The Crystal Structure of Anhydrous Copper(I1) Formate" by G. A. Barclay and C. H. L. Kennard, J.Chem.Soc., 3289-3294,(1961) "Structure factors and Fourier syntheses were calculated on UTECOM, a Deuce digital computer, with programmes written by Dr. J. S. Rollett"

Next slide: Comparison between Utecom and Home Desktop Pentium 4 PC October 2003 http://users.tpg.com.au/eedeuce /intro.htm

http://pubs.rsc.org.ezproxy.library.uq.edu.au/en/content/articlepdf/1961/jr/jr9610003289?page=search http://www.google.com.au/imgres?imgurl=http://www.members.optu Published on 01 January 1961 on http://pubs.rsc.org |i:10.1039/JR9610003289. snet.com.au/deucepix/raegertndaisy.jpg&imgrefurl=http://www.members.optusnet.com.au/deucepix/photoindex.htm&h=604&w=800&sz =60&tbnid=htukvJXhKFue3M:&tbnh=90&tbnw=119&prev=/search%3Fq%3Ddeuce%2Bmachine%2Bphoto%26tbm%3Disch%26tbo %3Du&zoom=1&q=deuce+machine+photo&docid=5nJH0iPzrawu_M&sa=X&ei=2XvVTq-2EK2imQXzs61q&ved=0CCMQ9QEwAA&dur=205

1 m = 1000 mm	Pentium 4 PC	UTECOM
	Pentium 4 Desktop PC	Deuce-Floor mounted computer
Active elements	42,000,000 Transistors	1,450 Thermionic Valves
Clock rate	500 MHZ System bus	1 MHZ
Additions per second	600,000,000	30,300
Mode	Parallel	Serial
Memory	256 MB Semiconductor	1.6 KB Acoustic - Mercury
Backing Store	40 GB Magnetic Hard Disk	32 KB Magnetic Drum
Rotation Speed	7200 Revs Per Minute	6510 Revs Per Minute
Monitor	17 inch Colour CRT	2 X 6 inch monochrome CRT
Input - Manual	110 key QWERTY keyboard	32 Input Dynamisiser toggles
Automatic	48 X - CD /RW	200 CPM Hollerith Card Reader
Transfer rate	7.2 MB per second	1,400 9 digit decimal numbers per minute
Output	Inkjet colour printer	100 CPM Hollerith Card Punch.
Transfer rate	10 pages per minute	700 9 digit numbers per minute
Operating System	Windows XP Home	NONE
Software	Word, MS Works etc	User contributed subroutine
Dimensions	-l 406mm –w 177mm –h 330mm	- l 4267mm –w 1371mm –h 2108mm
Weight	31.75 Kg	1193.85 Kg
Power Consumption	300 Watts	9,000 Watts
Power Requirements	240 Volts 1 phase 50 Hertz AC	440 Volts 3 phase 50 Hertz AC
Ventilation Requirements	20 cu. ft. per min. (Internal fan)	2000 cu. ft. per min. (External fan)
Space Required	4 sg. ft. desk area	92 sq. ft. floor area
Price	600 UK Pounds	50,000 UK Pounds
Total Sales	1,000,000,000 (PCs April 2000)	33 - From 1955 to 1964
Conception and the second second	the second s	http://users.tpg.com.au/eedeuce/intro.htm

Improvements with Computers Koomey's law Number of computations per joule of energy dissipated has been doubling approximately every 1.57 years

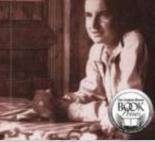
http://en.wikipedia.org/wiki/Koomey's_law

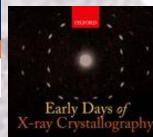
The Future

Designed to automatically
produce publication quality
structures for researchers
who have no special training
in chemical crystallography

New Scientist

Interesting Books


FIFTY YEARS OF X-RAY DIFFRACTION


EDITOR P. P. EWALD

Springer

ROSALIND FRANKLIN THE DARK LADY OF DNA

ANDRÉ AUTHLER

ROSALIND FRANKLIN


A. Annoning the lines Star-Bat the local data had up. has once of they preset has bridle pilled. thanks arise of per limit." Adam & Meson The Rep Link Trees Real division

THE DOUBLE HELIX

A Personal Account of the Discovery of THE STRUCTURE OF DNA

JAMES D. WATSON

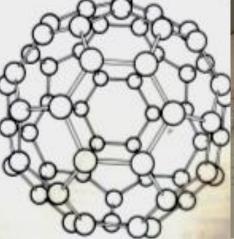
Introduction In SYLVIA NASAR Andrew of A Reservable Man

DOROTHY HODGKIN

THE ACCENCE ADDS OF THE YEAR, Increased

Due of the trent will compry's prost scien

PERSONAL PROPERTY OF A COMPANY

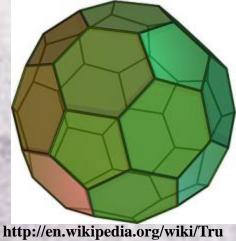

GEORGINA FERRY

AX PERUTZ

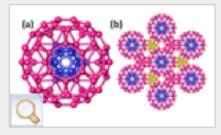
Art and Science

Sculpture by Donna Marius

http://journeyjottings.com/blog/2011/03/street-sculptures-in-brisbane/


Sculpture by Tomas Saraceno Harvest Exhibition GOMA

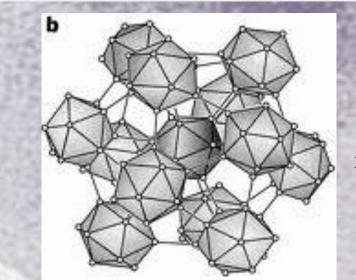
Art and Science


There is a pentangular cap around every point

β-Rhombohedral Boron

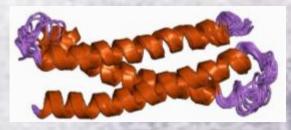
Joneur ar Doro

http://en.wikipedia.org/wiki/Tru ncated_icosahedron

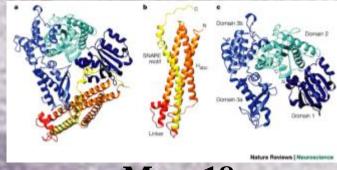


Icosahedron

Figure 2. The crystal structure of β -rhombohedral boron in terms of B₈₄ and B₁₀ units. (a) B₈₄ consists of a central B₁₂ icosahedron (blue) surrounded by 12 half icosahedra (pink). (b) B₈₄ units in adjacent rhombohedral unit cells connected via B₁₀ cluster units (gold). This view is from the *c*-axis (perpendicular to the page). These layered structures stick to each other along this axis, and interstitial boron

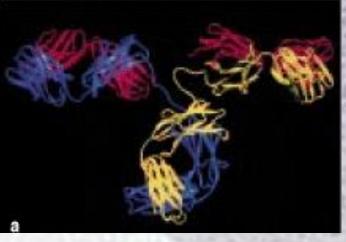

atoms (not drawn) lie between B₁₀ clusters connecting the layers.

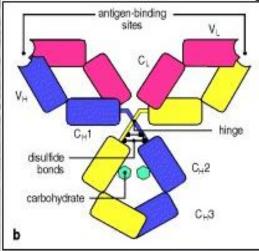
T. Ogitsu, E. Schwegler, and G. Galli, *Chem. Rev.*, 2013, *113* (5), pp 3425–3449

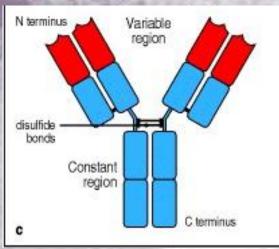

R.E.Hughes, C.H.L.Kennard, D.B.Sullenger, H.A.Weaklie m, D.E.Sands and J.L.Hoard, "The Structure of β-Rhombohedral Boron", *J.Amer.Chem.Soc.*, 85, 361 (1962)

Topics covered by **Professor Fred Meunier** workshop 2 on "Crystals in the Brain"

Syntaxin

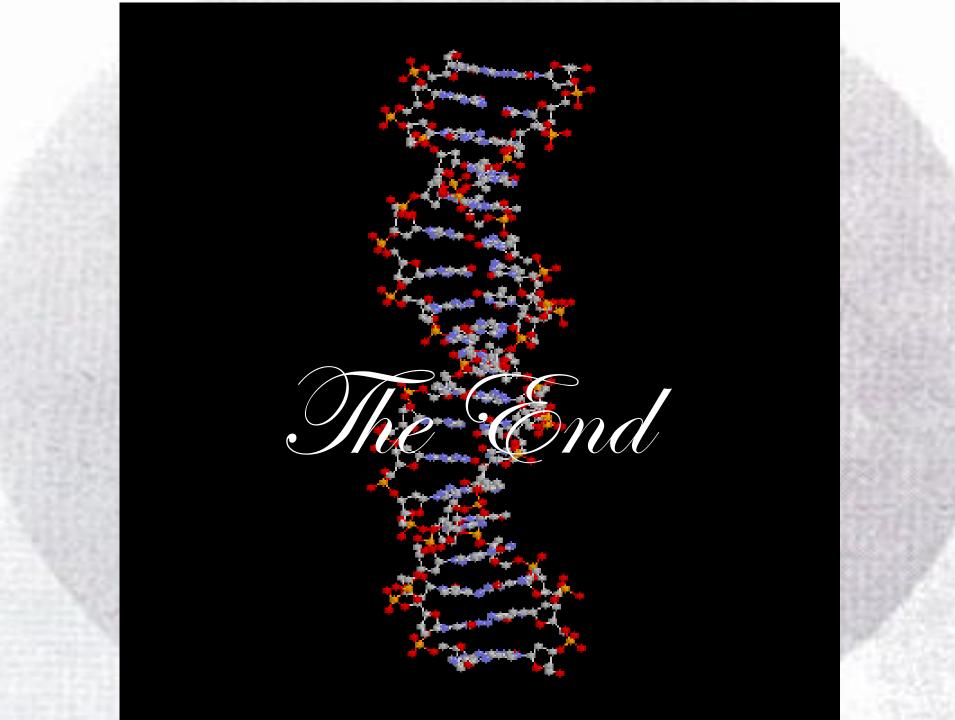

http://en.wikipedia.org/wiki/Syntaxin




Munc18

http://www.nature.com/nrn/journal/v3/n8/images/nrn898-f4.gif

Shannon Best in workshop 6 on "Crystallography and the immune response to infection" Structure of an antibody molecule



http://www.ncbi.nlm.nih.gov/books/NBK27144/

Advertisement from the sponsor The International Union of Crystallography

Log onto this

http://www.youtube.com/watch?feature=player_embedded&v=uqQlwYv8VQI

